If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+12t+1400
We move all terms to the left:
0-(-16t^2+12t+1400)=0
We add all the numbers together, and all the variables
-(-16t^2+12t+1400)=0
We get rid of parentheses
16t^2-12t-1400=0
a = 16; b = -12; c = -1400;
Δ = b2-4ac
Δ = -122-4·16·(-1400)
Δ = 89744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{89744}=\sqrt{16*5609}=\sqrt{16}*\sqrt{5609}=4\sqrt{5609}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{5609}}{2*16}=\frac{12-4\sqrt{5609}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{5609}}{2*16}=\frac{12+4\sqrt{5609}}{32} $
| 7×17-20+5x-38=180 | | .25x+7=4x−2 | | 12x+84=60 | | 1y=5(y-25) | | -90=-7r-6 | | 2p+21+45=5p | | n/19=15/19 | | 4x-3(3x+11)=23 | | 1(x+5)-2x=-35 | | -3(x+5)=-51 | | 3(x+1)(x+2)=x-(2x-3)(x+4) | | 4(x−2)=34 | | 11x+2-10x=2(4x+1)-7x | | -2(1+7r)+4=-110 | | 123-u=252 | | 0.2n=0.4 | | 4x+8=-24x+8 | | 3(x1)(x2)=x-(2x-3)(x4) | | 5x-3(x-2)=-7+5x-11 | | x2+-2x+1=25 | | y=-3*1-9 | | 2(z+24)=5z | | -5=3r-6+4 | | 93=-7+2(1-7p) | | 0=4K+2k | | 6x-10+10x+14=180 | | y=-3*0-9 | | -13g=-14-12g | | -82=9x+251 | | 4(3x-2)=6(x-3)-8 | | 3(4-x)=13-3x | | 9.5=7.8-x |